https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_b964594d3d957944241961017b9eb19bf02834de44cce93d8e67dd306852dbe346167181e455e33d5268ea01d973d77bb056848546f31794f31a4c31a9da5aa3.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_23f1ae74c634d7e5e0a067c22b7a8c2d79c3ffd9a3b9395fc82c1b3b99635552b994f1f72f532f28ceaff1ea054ea026cd488cd62fa03a4ad91d212b5f3c5a72.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_451c3884f51125f7687e5bb07cfab033c04cb7174c33f93213b2af4bad2af13cf48b92a7fa95fc86d7d436f355938a3ac50aa119cdb7c9b6d5a52815c3e6033e.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_bfff9e63e857e9ee612e292d4a6edf3ced64d6a756925c953a9d8f77845ff601eca64d73dfa48756b1a9f4a4d6de6127a273bcde16ddeb71a22383460f4e94b0.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_f4dd7e1d73ae5eda35ed5ad6aa965b612dbf483ece3ca50c1e8e30ad8dff1c66a160ed75e958e2db399661d229874783e0834ad813a479437035666b8e9e3386.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_4fce0769137d4cd096989b0349bc3c2bbfca79ac311fdf714c41ab24d87551c7b49b756c8a8de090b0714a0ad0560e49fa532ba5a88875ea4afd78efac464df6.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_85cec8b07d60426b11040e471babca0d2f9c8dc87a9b56e06cad39828f7f67179e29609100f282a574872c9a93fb635b25416300eb4c97bc5a653d00cf6f8dbf.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_6768e5a27d4d357347338621c0d20bd269b126d30eec796193390f2f530fbaea60af84130c46f9786114be65149e661e87d55c339219c90aa76396d7e5b734ef.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_2acd6bdff3b680341e8c727da5169a647123eb8fd0a90253161b4c3af272c15d293bf9bb217008bb13f84d1910b0e166798001f8603b6c026d5c20a76c41d47c.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_dbfc37c76507ec96b58fc2cda1e26f2790c4dd64c1305db8d9135cdb644b14597b7386717fb1a5ac6ff36c112f12f3bddb3bb0bd9fadf3a558e7e2d1fb2cc788.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_268c9bba6ba649318f0da28c37b09a9bbfa371210f9b6b52faa7fd8ae94abf6b3c3bfeb5df5705c93495ce1152ca58aeabc435d6c6c1bd959025165c3f50e086.js
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Home
  • Featured
    • Advanced Python Topics
    • AWS Learning Roadmap
    • JWT Complete Guide
    • Git CheatSheet
  • Explore
    • Programming
    • Development
      • microservices
      • Front End
    • Database
    • DevOps
    • Productivity
    • Tutorial Series
      • C# LinQ Tutorials
      • PHP Tutorials
  • Dev Tools
    • JSON Formatter
    • Diff Checker
    • JWT Decoder
    • JWT Generator
    • Base64 Converter
    • Data Format Converter
    • QR Code Generator
    • Javascript Minifier
    • CSS Minifier
    • Text Analyzer
  • About
  • Contact
CodeSamplez.com

CodeSamplez.com

Programming And Development Resources

You are here: Home / Programming / Python GIL (Global Interpreter Lock) Explained – A Complete Guide

Python GIL (Global Interpreter Lock) Explained – A Complete Guide

Updated June 10, 2025 by Rana Ahsan Leave a Comment ⏰ 6 minutes

Python GIL (Global Interpreter Lock) Tutorial

Have you ever wondered why your multi-threaded Python program isn’t blazing through tasks like you hoped? Chances are, you’ve run smack into the Python GIL— the Global Interpreter Lock. I’m here to break it down for you in a fun, clear way and packed with real-world goodies. By the end, you’ll master when to use threads, when to switch to multiprocessing, and how to turbocharge your code. Let’s dive in! 🚀

Tip 💡: Explore/Learn about more Advanced Topics in Python .

What is Python GIL?

The Global Interpreter Lock (GIL) is a mutex (mutual exclusion lock) that protects access to Python objects. It prevents multiple threads from executing Python bytecode simultaneously.

In more simpler terms, the Python GIL ensures that only one thread runs Python code at a time, even on multi-core systems.

As an analogy, picture a busy supermarket with tons of checkout lanes but just one cashier. Customers (threads) line up, and even with all those lanes (CPU cores), only one gets served at a time

The GIL is implemented at the C level in CPython (Python’s standard implementation). It’s a single lock on the interpreter itself. See the official wiki page for more info

Why Does Python Have a GIL?

The GIL wasn’t added to make our lives difficult – it was a practical solution to a critical problem. Here’s why it exists:

  1. Memory Management Simplicity: Python uses reference counting for memory management. Without the GIL, there would be race conditions between threads trying to update reference counts.
  2. C Extensions Compatibility: Many C extensions for Python aren’t thread-safe. The GIL ensures they don’t trip over each other.
  3. Historical Reasons: When Python was created in the early 1990s, multi-core processors were rare. The GIL was a smart design choice back then.

I once spent quite some time trying to track down a mysterious memory corruption bug in a multithreaded Python application. After countless hours of debugging, I discovered it was caused by a C extension that wasn’t thread-safe. The GIL has been preventing these issues throughout standard operations!

The Impact of GIL on Your Python Code

The GIL affects different Python operations in different ways. Let’s break them down into two categories: CPU Bound and I/O Bound

CPU-Bound Operations

These operations primarily use CPU resources (calculations, number crunching, etc.). For CPU-bound tasks, the GIL is often a bottleneck because:

import threading
import time

def cpu_bound_task(n):
# A simple CPU-bound task: calculate sum of squares
total = 0
for i in range(n):
total += i * i
return total

# Single-threaded approach
start = time.time()
result1 = cpu_bound_task(10_000_000)
result2 = cpu_bound_task(10_000_000)
end = time.time()
print(f"Sequential execution time: {end - start:.2f} seconds")

# Multi-threaded approach
start = time.time()
t1 = threading.Thread(target=cpu_bound_task, args=(10_000_000,))
t2 = threading.Thread(target=cpu_bound_task, args=(10_000_000,))
t1.start()
t2.start()
t1.join()
t2.join()
end = time.time()
print(f"Threaded execution time: {end - start:.2f} seconds")Code language: PHP (php)

Surprisingly, the threaded version might actually be SLOWER due to thread switching overhead! 😲

Here’s an illustration how program execution works under the hood:

Programm execution flow diagram illustrating concurrency with Python GIL

I/O-Bound Operations

These operations involve waiting for external resources (files, networks, etc.). For I/O-bound tasks, the GIL doesn’t matter much because:

  • The GIL is released during I/O operations
  • Threads spend most of their time waiting rather than executing Python code
import threading
import time
import requests

def io_bound_task(url):
response = requests.get(url)
return len(response.content)

urls = ["https://python.org", "https://google.com", "https://github.com"] * 3

# Single-threaded approach
start = time.time()
for url in urls:
io_bound_task(url)
end = time.time()
print(f"Sequential execution time: {end - start:.2f} seconds")

# Multi-threaded approach
start = time.time()
threads = []
for url in urls:
t = threading.Thread(target=io_bound_task, args=(url,))
threads.append(t)
t.start()

for t in threads:
t.join()
end = time.time()
print(f"Threaded execution time: {end - start:.2f} seconds")Code language: PHP (php)

In this case, the threaded version will be MUCH faster because the GIL isn’t a bottleneck!

How to Work Around the GIL

There are few effective strategies to work around and bypass the GIL constraints:

1. Use Multiprocessing Instead of Threading

The multiprocessing module creates separate Python processes, each with its own GIL:

import multiprocessing
import time

def cpu_bound_task(n):
total = 0
for i in range(n):
total += i * i
return total

if __name__ == "__main__":
# Multiprocessing approach
start = time.time()
p1 = multiprocessing.Process(target=cpu_bound_task, args=(10_000_000,))
p2 = multiprocessing.Process(target=cpu_bound_task, args=(10_000_000,))
p1.start()
p2.start()
p1.join()
p2.join()
end = time.time()
print(f"Multiprocessing execution time: {end - start:.2f} seconds")Code language: PHP (php)

2. Use Python’s Concurrent Libraries

The concurrent.futures module provides a high-level interface for asynchronously executing callable:

import concurrent.futures
import time

def cpu_bound_task(n):
total = 0
for i in range(n):
total += i * i
return total

# Using ProcessPoolExecutor for CPU-bound tasks
start = time.time()
with concurrent.futures.ProcessPoolExecutor() as executor:
futures = [executor.submit(cpu_bound_task, 10_000_000) for _ in range(4)]
for future in concurrent.futures.as_completed(futures):
result = future.result()
end = time.time()
print(f"ProcessPoolExecutor time: {end - start:.2f} seconds")Code language: PHP (php)

3. Use Python Extensions That Release the GIL

Some Python packages are specifically designed to release the GIL during computation:

  • NumPy releases the GIL during many array operations
  • Pandas leverages NumPy’s GIL-releasing capabilities
  • Numba can compile Python functions that run without the GIL
import numpy as np
import time

# Regular Python
start = time.time()
result = 0
for i in range(10_000_000):
result += i * i
end = time.time()
print(f"Python calculation time: {end - start:.2f} seconds")

# NumPy (releases the GIL for this operation)
start = time.time()
a = np.arange(10_000_000)
result = np.sum(a * a)
end = time.time()
print(f"NumPy calculation time: {end - start:.2f} seconds")Code language: PHP (php)

4. Use Asynchronous Programming for I/O-Bound Tasks

For I/O-bound tasks, asyncio can be more efficient than threading. We have explained about asyncio in python in more detailed, feel free to check it out.

The Future of GIL

Python’s creator, Guido van Rossum, has acknowledged the limitations of the GIL. There have been few attempts to remove it, notably:

  • The “free-threaded” Python project
  • PyPy’s Software Transactional Memory implementation
  • The Gilectomy Project by Larry Hastings

Python 3.12 and 3.13 are introducing improved GIL-related optimizations, and PEP 703 proposes a version of Python without the GIL. This might eventually lead to a GIL-free future, but for now, we need to work with it.

Conclusion: Embracing the GIL

Understanding when the GIL matters (CPU-bound code) and when it doesn’t (I/O-bound code) is key to writing efficient Python programs. Use multiprocessing or specialized libraries for CPU-intensive tasks. Threading or AsyncIO works perfectly well for I/O-bound work.

Remember this: the GIL is the price we pay for Python’s simplicity, robust C extension ecosystem, and ease of memory management. It’s a trade-off, not a defect! 💪

Have you encountered the GIL in your Python projects? What strategies have you used to work around it? I’d love to hear your experiences! Happy 🐍 programming!

Share if liked!

  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on X (Opens in new window) X
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pocket (Opens in new window) Pocket

You may also like


Discover more from CodeSamplez.com

Subscribe to get the latest posts sent to your email.

First Published On: March 13, 2025 Filed Under: Programming Tagged With: concurrency, python

About Rana Ahsan

Rana Ahsan is a seasoned software engineer and technology leader specialized in distributed systems and software architecture. With a Master’s in Software Engineering from Concordia University, his experience spans leading scalable architecture at Coursera and TopHat, contributing to open-source projects. This blog, CodeSamplez.com, showcases his passion for sharing practical insights on programming and distributed systems concepts and help educate others.
Github | X | LinkedIn

Reader Interactions

Leave a ReplyCancel reply

Primary Sidebar

  • Facebook
  • X
  • Pinterest
  • Tumblr

Subscribe via Email

Top Picks

python local environment setup

Python Local Development Environment: Complete Setup Guide

In-Depth JWT Tutorial Guide For Beginners

JSON Web Tokens (JWT): A Complete In-Depth Beginners Tutorial

The Ultimate Git Commands CheatSheet

Git Commands Cheatsheet: The Ultimate Git Reference

web development architecture case studies

Web Development Architecture Case Studies: Lessons From Titans

static website deployment s3 cloudfront

Host Static Website With AWS S3 And CloudFront – Step By Step

Featured Dev Tools

  • JWT Decoder
  • JSON Formatter

Recently Published

service worker framework integration

Service Workers in React: Framework Integration Guide

service worker caching strategies

Service Worker Caching Strategies: Performance & Offline Apps

service worker lifecycle

Service Worker Lifecycle: Complete Guide for FE Developers

what is service worker

What Is a Service Worker? A Beginner’s Guide

Dynamic Typing In Python

Dynamic Typing in Python: A Comprehensive Guide For Beginners

Footer

Subscribe via Email

Follow Us

  • Facebook
  • X
  • Pinterest
  • Tumblr

Explore By Topics

Python | AWS | PHP | C# | Javascript

Copyright © 2025

https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_cbc3271801f30800f2d047cef2eeec8365cae482b9e28888d82b2795a16b93588763cb888e471b7776ab32734f2b1bc838bf6398dd650fdf002a37965e0335b1.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_c402e38f1879c18090377fb6b73b15ac158be453ecda3a54456494fe8aba42b990c293bae5424e5643d52515ffc2067e0819995be8d07d5bba9107a96780775c.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_ffc3511227531cc335353c54c3cbbaa11d0b80e5cb117478e144436c13cd05495b67af2e8950480ed54dbdabcdcef497c90fdb9814e88fe5978e1d56ce09f2cf.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_d57da9abfef16337e5bc44c4fc6488de258896ce8a4d42e1b53467f701a60ad499eb48d8ae790779e6b4b29bd016713138cd7ba352bce5724e2d3fe05d638b27.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_edc0e9ef106cc9ef7edd8033c5c6fcff6dc09ee901fd07f4b90a16d9345b35a06534f639e018a64baaf9384eee1df305570c1ecad747f41b787b89f53839962b.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_bc2182bb3de51847c8685df18692deda654dbf90fb01b503eb1bb0b68b879a051b91f30a9210ed0b2ba47c730db14b159cd9391ffdcd7117de397edd18366360.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_dccc492dbbfdac33d1411f9df909e849c7268fcf99b43007f278cde3a0adc0ae00e8cae5ec81cf255b9a6eae74e239ba1fa935572af77173219cb081f7d2327d.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_00bacf9e36181aac2b666d110cd9d82257f846766e7041b2d7b3c909b458982931ccc9b203e37098fbdfcf43ca359cf04e3824a724a6789fc204196d3a72ad29.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_72f0b62bed031ab40ba0732e51c1482fae942c3f12daad4527211dfb7ee662854d62bb9a0ff7309f7c871a3fb3a754dd50c231d8778d644045da26abc2e3b419.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_aa5a5d229b421633f4247380e1e8c0a4854f82efb35d13a5b07b7b8fbe22e98842a580f063e5965345a51c477a7f5c2585edf8dd7d896b2438dc61f91d8d970c.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_bb8058a9e234a7ffaa98891b1df7f6b8e67410e6984568b151daa05113b8c7f89d7b5918ae73f020998a16f7f5a087a13d6a9a5e5d7c301e2ca12fd9d1f8d177.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_647fb67570c6108fb10ae6785a1abdbecac99ffcf80351d0bef17c3cf783dce497b1895fcdaae997dacc72c359fbfb128cc1540dd7df56deb4961e1cd4b22636.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_f7a298a0f1f754623fe3b30f6910ce2c1373f715450750bd7a391571812b00df1917e2be90df6c4efc54dbdfda8616278a574dea02ba2c7a31992768df8db334.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_df30604d5842ef29888c3c1881220dc6d3f8854666d94f0680c5f38aa643c5fb79b10eb9f10998d8856eb24ca265783195937434fd6c2bb8e4846df0277a7fb7.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_f17fe6fb0993f1703181d7ae9e9ea570f3d33a43afd6f2a4567daa1a6745698c7b8193dc72d50991d2dd87cd3dcf663959206607d193a9b57926d061a1f50aef.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_945dcbab2c2a131f3c90f4fb91776b76066d589f84fb55bff25cd5d79a56218000616bfca1f0af9a74f32348693707af49e8fe624de8aa34f1e1c5b6a25709cf.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_65820d252e1b93596de6697fd5f02483f3e2524a0696c7d698b64745edb32bf5831a90e556842f5f88c8209766cc78ca3a41cf783d20236a9f90d4a7ea7b3e72.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_7286884797a1210857e2a36f8ab46604b0034b6abf512380447a5763c873db6a72b8547f660053de0ea69faef1eb64878f39ff4b0ea86c963efab95764a3bf5b.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_cbcf6c279ac6c6a25ae138bf964e64a5fd90d22dcdf8a53b6fe7b72cefa51063bfb0181a6e50dd2acdcae2795619887d1d83b10461e44e5103be756f2588d837.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_47965bc586b95810c925b9df3314e0c9a5cd121e70ca0831f87df0bc034695de4f83ecf2def86f737e14614ee138794473cf32cd3082a5d38db9dec0c1f266fa.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_12aa201cea075846d266536aa222d64d4088b851d87f55dac5e611b77add6826c8ebc6e82650fcd1a9e88a05a0072dedd195719c5f64cd4580a0acd8aee05d92.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_eaa93529c38925eb07368c361382956fbd910b5106b8589fa7e2e15a59c46437de3698d50ec4754bc45e6dfac47b3f41cc4c6112d7ede071ca8950385d4987dc.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_acb2bed9676424fd1c614e7ba1ffa3e4fd9b0ee2f1c1a8d31bce41aadf0f555786033ef4333262ab2b3a43c309348e6fcd22cd51e7cd3901645896b3af795c38.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_d87ea86dd0e7ecdd5fe7a5bb67becf943e57c3add866b456034d51663d099031bd563e12f61fdccc044969adf938a8584ed22ccd401ab8b669e20e4f92fb54e8.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_35311c3d71a3605fad4e1d6b50f3911311cdcc46418bdf56d6d0308a75a69585269ee7582a335e29989adf308fa1a81a10a2c2d4e257e9d680447a4996f6269e.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_f4fc182ef03c12e9dcadd6febc3dbaa4a29134469057ca9e8ec0be2f2de29a494514ff4b59798e74debf26f78b2df2b3e2665c69b77035761fb463b783202915.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_85c0f2769456e60153b0fd8364b82a035da53384f62de342d9bdca806f3f1ea56486919a00497a18d457949c82bf8bfacc4423fc332074ddf71a49a8fe628fff.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_67f99bef3678c549a14b5f2ff790cce6aba338dca29020755444231b45fa0f980f795e3658496ba70739a099b47b22bc2eab564343ac6132309de3adbbae3455.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_09eecfdd96206ed13830b4b93cfb2cc75cd38083671a34194437b5734b5bb38712209dc335b07e3266ceb3c3a44a155b9bbe5f3e0e1105b19dd45d3def76f020.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_4c089fbdb88e3b624a6f884d3ba1bf606f003bfcd3742376d0d353cd62181dc663aa3811a56361c3100de488fc4d6595a50de2b26f058921ba74f5f2c1b5be00.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_897ff6ac314c5f5e0f496c6af624bd9abf296a02cb5aeb850b9220b6dc3ce2fc4004cb02ed8b59d59d4b9c9d90f050d6eebc1d08ecaebab2f671f7d9367e6410.js
https://codesamplez.com/wp-content/cache/breeze-minification/js/breeze_67d1e619e71d36ae00ddcf85ee18628bb4eb64fcb3d6119b463e75cb987013420a21136d19cd03e6634ccc01cfa9af4a357930e4cf6900953b7812efb4f249fb.js